Abstract
Toxics. 2025 May 24;13(6):429. doi: 10.3390/toxics13060429.
ABSTRACT
With the widespread use of plastic products globally, the issue of microplastics as environmental pollutants has become increasingly severe. Due to their small size, large surface area, and hydrophobic properties, microplastics are capable of adsorbing various pollutants, particularly radionuclides, which, in turn, can impact the stability of ecosystems. This laboratory study investigates the adsorption capacity of microplastics (PVC) for radionuclides (Ra-226, Cs-137, and K-40) under controlled conditions, examining the effects of spatial distribution and particle size. The laboratory experiment results indicate that the adsorption of Ra-226 by microplastics was significantly higher in the bottom water compared to the surface layer, with concentrations of 13.29 mBq/kg on microplastics mixed with the bottom water and 1.65 mBq/kg in the surface layer. The concentration of Cs-137 on microplastics mixed with the bottom water was 6.99 mBq/kg, while on microplastics mixed with the surface water, the concentration was 1.31 mBq/kg. In contrast, the adsorption of K-40 was lower, with concentrations of 2.1 mBq/kg and 0.35 mBq/kg on microplastics mixed with the bottom and surface water, respectively. Furthermore, microplastics with smaller particle sizes exhibited stronger adsorption capacities. The adsorption concentrations of Ra-226 and Cs-137 by 50 µm microplastics were 13.29 mBq/kg and 6.99 mBq/kg, respectively, while the concentrations for 100 µm and 150 µm particles decreased to 3.14 mBq/kg and 1.39 mBq/kg, and 2.2 mBq/kg and 0.35 mBq/kg, respectively. These findings suggest that the adsorption capacity of microplastics is significantly influenced by particle size and sediment depth, highlighting the potential risk of exacerbating the spread of radioactive pollutants in marine ecosystems.
PMID:40559903 | DOI:10.3390/toxics13060429